Citation

Kosofsky BE, Genova LM, Hyman SE. 1995. Substance P phenotype defines specificity of c-fos induction by cocaine in developing rat striatum. The Journal of comparative neurology. 351(1):41-50. Pubmed: 7534774

Abstract

Activation of c-fos, a member of the class of immediate early genes that act as transcription factors, may be one of the initial molecular mechanisms underlying plastic changes in gene expression in response to drugs of abuse. By combining c-fos (radioactive) in situ hybridization histochemistry with nonradioactive in situ hybridization histochemistry for mRNAs encoding other striatal markers [preprotachykinin (substance P), proenkephalin, and D1 and D2 receptors], we have identified the cellular phenotype of striatal neurons activated by acute administration of cocaine to P8, P15, P28, and adult rats. At each age examined, substance P+, enkephalin- striatal neurons were the predominant class of cells in which cocaine induced c-fos gene expression. In addition, the topography of cellular activation at each age examined was distinct and reflected the topography of distribution of cells expressing high levels of substance P mRNA. We conclude that there is a marked specificity of cellular activation in striatum following acute cocaine administration restricted predominantly to subsets of substance P-expressing cells, with age-specific patterns in their topographic distribution.

Related Faculty

Photo of Steven Hyman

Steven Hyman is Director of the Stanley Center for Psychiatric Research at the Broad Institute and Chair of the Schizophrenia Spectrum Biomarkers Consortium (SSBC), a consortium identifying objective biomarkers to enable better diagnosis of and treatment for schizophrenia and related illnesses.

Search Menu