Publications

Selected Publications

Paik, E.J., et al., 2018. Using intracellular markers to identify a novel set of surface markers for live cell purification from a heterogeneous hIPSC culture. Sci Rep , 8 (1) , pp. 804.Abstract
Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can provide sources for midbrain dopaminergic (mDA) neural progenitors (NPCs) for cell therapy to treat Parkinson's disease (PD) patients. However, the well-known line-to-cell line variability in the differentiation capacity of individual cell lines needs to be improved for the success of this therapy. To address this issue, we sought to identify mDA NPC specific cell surface markers for fluorescence activated cell sorting (FACS). Through RNA isolation after sorting for NPCs based on staining for cell-specific transcription factors followed by microarray, we identified two positive cell surface markers (CORIN and CD166) and one negative cell surface marker (CXCR4) for mDA NPC sorting. These three markers can enrich floor plate NPCs to 90% purity, and the sorted NPCs more efficiently differentiate to mature dopaminergic neurons compared to unsorted or CORIN alone mDA NPCs. This surface marker identification strategy can be used broadly to facilitate isolation of cell subtypes of interest from heterogeneous cultures.
Ordureau, A., et al., 2018. Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics. Mol Cell , 70 (2) , pp. 211-227.e8.Abstract
Flux through kinase and ubiquitin-driven signaling systems depends on the modification kinetics, stoichiometry, primary site specificity, and target abundance within the pathway, yet we rarely understand these parameters and their spatial organization within cells. Here we develop temporal digital snapshots of ubiquitin signaling on the mitochondrial outer membrane in embryonic stem cell-derived neurons, and we model HeLa cell systems upon activation of the PINK1 kinase and PARKIN ubiquitin ligase by proteomic counting of ubiquitylation and phosphorylation events. We define the kinetics and site specificity of PARKIN-dependent target ubiquitylation, and we demonstrate the power of this approach to quantify pathway modulators and to mechanistically define the role of PARKIN UBL phosphorylation in pathway activation in induced neurons. Finally, through modulation of pS65-Ub on mitochondria, we demonstrate that Ub hyper-phosphorylation is inhibitory to mitophagy receptor recruitment, indicating that pS65-Ub stoichiometry in vivo is optimized to coordinate PARKIN recruitment via pS65-Ub and mitophagy receptors via unphosphorylated chains.
Rodriguez-Muela, N., et al., 2018. Blocking p62/SQSTM1-dependent SMN degradation ameliorates Spinal Muscular Atrophy disease phenotypes. J Clin Invest.Abstract
Spinal muscular atrophy (SMA), a degenerative motor neuron (MN) disease caused by loss of functional SMN protein due to SMN1 gene mutations, is a leading cause of infant mortality. Increasing SMN levels ameliorates the disease phenotype and is unanimously accepted as a therapeutic approach for SMA patients. The ubiquitin/proteasome system is known to regulate SMN protein levels; however whether autophagy controls SMN levels remains poorly explored. Here we show that SMN protein is degraded by autophagy. Pharmacological and genetic inhibition of autophagy increase SMN levels, while induction of autophagy decreases SMN. SMN degradation occurs via its interaction with the autophagy adapter p62/SQSTM1. We also show that SMA neurons display reduced autophagosome clearance, increased p62/ubiquitinated protein levels, and hyperactivated mTORC1 signaling. Importantly, reducing p62 levels markedly increases SMN and its binding partner gemin2, promotes MN survival and extends lifespan in fly and mouse SMA models revealing p62 as a new potential therapeutic target to treat SMA.
Christiansen, E.M., et al., 2018. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell , 173 (3) , pp. 792-803.e19.Abstract
Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary perturbations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call "in silico labeling" (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire.
Feinberg, K., et al., 2017. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria. J Cell Biol , 216 (11) , pp. 3655-3675.Abstract
Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug.
Ahfeldt, T., Litterman, N.K. & Rubin, L.L., 2017. Studying human disease using human neurons. Brain Res , 1656 , pp. 40-48.Abstract
Utilizing patient derived cells has enormous promise for discovering new drugs for diseases of the nervous system, a goal that has been historically quite challenging. In this review, we will outline the potential of human stem cell derived neuron models for assessing therapeutics and high-throughput screening and compare to more traditional drug discovery strategies. We summarize recent successes of the approach and discuss special considerations for developing human stem cell based assays. New technologies, such as genome editing, offer improvements to help overcome the challenges that remain. Finally, human neurons derived from patient cells have advantages for translational research beyond drug screening as they can also be used to identify individual efficacy and safety prior to clinical testing and for dissecting disease mechanisms. This article is part of a Special Issue entitled SI: Exploiting human neurons.
d'Ydewalle, C., et al., 2017. The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy. Neuron , 93 (1) , pp. 66-79.Abstract
The neuromuscular disorder spinal muscular atrophy (SMA), the most common inherited killer of infants, is caused by insufficient expression of survival motor neuron (SMN) protein. SMA therapeutics development efforts have focused on identifying strategies to increase SMN expression. We identified a long non-coding RNA (lncRNA) that arises from the antisense strand of SMN, SMN-AS1, which is enriched in neurons and transcriptionally represses SMN expression by recruiting the epigenetic Polycomb repressive complex-2. Targeted degradation of SMN-AS1 with antisense oligonucleotides (ASOs) increases SMN expression in patient-derived cells, cultured neurons, and the mouse central nervous system. SMN-AS1 ASOs delivered together with SMN2 splice-switching oligonucleotides additively increase SMN expression and improve survival of severe SMA mice. This study is the first proof of concept that targeting a lncRNA to transcriptionally activate SMN2 can be combined with SMN2 splicing modification to ameliorate SMA and demonstrates the promise of combinatorial ASOs for the treatment of neurogenetic disorders.
Palomo, V., et al., 2017. Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases. J Med Chem , 60 (12) , pp. 4983-5001.Abstract
Glycogen synthase kinase 3 β (GSK-3β) is a central target in several unmet diseases. To increase the specificity of GSK-3β inhibitors in chronic treatments, we developed small molecules allowing subtle modulation of GSK-3β activity. Design synthesis, structure-activity relationships, and binding mode of quinoline-3-carbohydrazide derivatives as allosteric modulators of GSK-3β are presented here. Furthermore, we show how allosteric binders may overcome the β-catenin side effects associated with strong GSK-3β inhibition. The therapeutic potential of some of these modulators has been tested in human samples from patients with congenital myotonic dystrophy type 1 (CDM1) and spinal muscular atrophy (SMA) patients. We found that compound 53 improves delayed myogenesis in CDM1 myoblasts, while compounds 1 and 53 have neuroprotective properties in SMA-derived cells. These findings suggest that the allosteric modulators of GSK-3β may be used for future development of drugs for DM1, SMA, and other chronic diseases where GSK-3β inhibition exhibits therapeutic effects.
Tripathi, P., et al., 2017. Reactive Astrocytes Promote ALS-like Degeneration and Intracellular Protein Aggregation in Human Motor Neurons by Disrupting Autophagy through TGF-β1. Stem Cell Reports , 9 (2) , pp. 667-680.Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing motor neuron disease. Astrocytic factors are known to contribute to motor neuron degeneration and death in ALS. However, the role of astrocyte in promoting motor neuron protein aggregation, a disease hallmark of ALS, remains largely unclear. Here, using culture models of human motor neurons and primary astrocytes of different genotypes (wild-type or SOD1 mutant) and reactive states (non-reactive or reactive), we show that reactive astrocytes, regardless of their genotypes, reduce motor neuron health and lead to moderate neuronal loss. After prolonged co-cultures of up to 2 months, motor neurons show increased axonal and cytoplasmic protein inclusions characteristic of ALS. Reactive astrocytes induce protein aggregation in part by releasing transforming growth factor β1 (TGF-β1), which disrupts motor neuron autophagy through the mTOR pathway. These results reveal the important contribution of reactive astrocytes in promoting aspects of ALS pathology independent of genetic influences.
Rodriguez-Muela, N., et al., 2017. Single-Cell Analysis of SMN Reveals Its Broader Role in Neuromuscular Disease. Cell Rep , 18 (6) , pp. 1484-1498. PubMedAbstract
The mechanism underlying selective motor neuron (MN) death remains an essential question in the MN disease field. The MN disease spinal muscular atrophy (SMA) is attributable to reduced levels of the ubiquitous protein SMN. Here, we report that SMN levels are widely variable in MNs within a single genetic background and that this heterogeneity is seen not only in SMA MNs but also in MNs derived from controls and amyotrophic lateral sclerosis (ALS) patients. Furthermore, cells with low SMN are more susceptible to cell death. These findings raise the important clinical implication that some SMN-elevating therapeutics might be effective in MN diseases besides SMA. Supporting this, we found that increasing SMN across all MN populations using an Nedd8-activating enzyme inhibitor promotes survival in both SMA and ALS-derived MNs. Altogether, our work demonstrates that examination of human neurons at the single-cell level can reveal alternative strategies to be explored in the treatment of degenerative diseases.
Rigamonti, A., et al., 2016. Large-Scale Production of Mature Neurons from Human Pluripotent Stem Cells in a Three-Dimensional Suspension Culture System. Stem Cell Reports , 6 (6) , pp. 993-1008. Publisher's VersionAbstract
Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body, including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system, provides a platform for the screening of chemical libraries that affect these processes, and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However, defining protocols that permit a large number and high yield of neurons has proved difficult. We present differentiation protocols for the generation of distinct subtypes of neurons in a highly reproducible manner, with minimal experiment-to-experiment variation. These neurons form synapses with neighboring cells, exhibit spontaneous electrical activity, and respond appropriately to depolarization. hPSC-derived neurons exhibit a high degree of maturation and survive in culture for up to 4-5 months, even without astrocyte feeder layers.
Walker, R.G., et al., 2016. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res , 118 (7) , pp. 1125-41; discussion 1142. Publisher's VersionAbstract
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.
Katsimpardi, L. & Rubin, L.L., 2015. Young systemic factors as a medicine for age-related neurodegenerative diseases. Neurogenesis (Austin) , 2 (1) , pp. e1004971.Abstract
It is widely known that neurogenesis, brain function and cognition decline with aging. Increasing evidence suggests that cerebrovascular dysfunction is a major cause of cognitive impairment in the elderly but is also involved in age-related neurodegenerative diseases. Finding ways and molecules that reverse this process and ameliorate age- and disease-related cognitive impairment by targeting vascular and neurogenic deterioration would be of great therapeutic value. In Katsimpardi et al. we reported that young blood has a dual beneficial effect in the aged brain by restoring age-related decline in neurogenesis as well as inducing a striking remodeling of the aged vasculature and restoring blood flow to youthful levels. Additionally, we identified a youthful systemic factor, GDF11 that recapitulates these beneficial effects of young blood. We believe that the identification of young systemic factors that can rejuvenate the aged brain opens new roads to therapeutic intervention for neurodegenerative diseases by targeting both neural stem cells and neurogenesis as well as at the vasculature.
Xue, R., et al., 2015. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med , 21 (7) , pp. 760-8.Abstract
Targeting brown adipose tissue (BAT) content or activity has therapeutic potential for treating obesity and the metabolic syndrome by increasing energy expenditure. However, both inter- and intra-individual differences contribute to heterogeneity in human BAT and potentially to differential thermogenic capacity in human populations. Here we generated clones of brown and white preadipocytes from human neck fat and characterized their adipogenic and thermogenic differentiation. We combined an uncoupling protein 1 (UCP1) reporter system and expression profiling to define novel sets of gene signatures in human preadipocytes that could predict the thermogenic potential of the cells once they were maturated. Knocking out the positive UCP1 regulators, PREX1 and EDNRB, in brown preadipocytes using CRISPR-Cas9 markedly abolished the high level of UCP1 in brown adipocytes differentiated from the preadipocytes. Finally, we were able to prospectively isolate adipose progenitors with great thermogenic potential using the cell surface marker CD29. These data provide new insights into the cellular heterogeneity in human fat and offer potential biomarkers for identifying thermogenically competent preadipocytes.
Brennand, K.J., et al., 2015. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders. Stem Cell Reports , 5 (6) , pp. 933-945.Abstract
As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.
  •  
  • 1 of 7
  • »