Surdez D, Kunz B, Wagers AJ, Weissman IL, Terskikh AV. Simple and efficient isolation of hematopoietic stem cells from H2K-zFP transgenic mice. Stem cells (Dayton, Ohio). 23(10):1617-25. Pubmed: 16091556


We have generated a transgenic mouse line that allows for simple and highly efficient enrichment for mouse hematopoietic stem cells (HSCs). The transgene expresses a green fluorescent protein variant (zFP) under the control of H2Kb promoter/enhancer element. Despite the broad zFP expression, transgenic HSCs express exceptionally high levels of zFP, allowing prospective isolation of a population highly enriched in HSCs by sorting the 0.2% of the brightest green cells from the enriched bone marrow of H2K-zFP mice. Up to 90% of zFP(bright) cells are also c-kit(high), Sca-1(high), Lin(neg), Flk-2(neg), which is a bona fide phenotype for long-term HSCs. Double-sorted zFP(bright) HSCs were capable of long-term multilineage reconstitution at a limiting dilution dose of approximately 12 cells, which is comparable to that of highly purified HSCs obtained by conventional multicolor flow cytometry. Thus, the H2K-zFP transgenic mice provide a straightforward and easy setup for the simple and highly efficient enrichment for genetically labeled HSCs without using fluorescence-conjugated monoclonal antibodies. This approach will greatly facilitate gene transfer, including short interfering RNA for gene knockdown, into HSCs and, consequently, into all other hematopoietic lineages.

Related Faculty

Photo of Amy Wagers

Amy Wagers seeks to change the way we repair our tissues after an injury. Her research focuses on defining the factors and mechanisms that regulate the migration, expansion, and regenerative potential of adult blood-forming and muscle-forming stem cells.

Search Menu