Citation

Mor N, Rais Y, Sheban D, Peles S, Aguilera-Castrejon A, Zviran A, Elinger D, Viukov S, Geula S, Krupalnik V, Zerbib M, Chomsky E, Lasman L, Shani T, Bayerl J, Gafni O, Hanna S, Buenrostro JD, Hagai T, Masika H, Vainorius G, Bergman Y, Greenleaf WJ, Esteban MA, Elling U, Levin Y, Massarwa R, Merbl Y, Novershtern N, Hanna JH. 2018. Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. Cell stem cell. 23(3):412-425.e10. Pubmed: 30122475 DOI:S1934-5909(18)30340-0

Abstract

Mbd3, a member of nucleosome remodeling and deacetylase (NuRD) co-repressor complex, was previously identified as an inhibitor for deterministic induced pluripotent stem cell (iPSC) reprogramming, where up to 100% of donor cells successfully complete the process. NuRD can assume multiple mutually exclusive conformations, and it remains unclear whether this deterministic phenotype can be attributed to a specific Mbd3/NuRD subcomplex. Moreover, since complete ablation of Mbd3 blocks somatic cell proliferation, we aimed to explore functionally relevant alternative ways to neutralize Mbd3-dependent NuRD activity. We identify Gatad2a, a NuRD-specific subunit, whose complete deletion specifically disrupts Mbd3/NuRD repressive activity on the pluripotency circuitry during iPSC differentiation and reprogramming without ablating somatic cell proliferation. Inhibition of Gatad2a facilitates deterministic murine iPSC reprogramming within 8 days. We validate a distinct molecular axis, Gatad2a-Chd4-Mbd3, within Mbd3/NuRD as being critical for blocking reestablishment of naive pluripotency and further highlight signaling-dependent and post-translational modifications of Mbd3/NuRD that influence its interactions and assembly.
Copyright © 2018 Elsevier Inc. All rights reserved.

Related Faculty

Photo of Jason Buenrostro

The Buenrostro lab is broadly dedicated to advancing our knowledge of gene regulation and the downstream consequences on cell fate decisions.

Search Menu