Citation

Cheong JG, Ravishankar A, Sharma S, Parkhurst CN, Grassmann SA, Wingert CK, Laurent P, Ma S, Paddock L, Miranda IC, Karakaslar EO, Nehar-Belaid D, Thibodeau A, Bale MJ, Kartha VK, Yee JK, Mays MY, Jiang C, Daman AW, Martinez de Paz A, Ahimovic D, Ramos V, Lercher A, Nielsen E, Alvarez-Mulett S, Zheng L, Earl A, Yallowitz A, Robbins L, LaFond E, Weidman KL, Racine-Brzostek S, Yang HS, Price DR, Leyre L, Rendeiro AF, Ravichandran H, Kim J, Borczuk AC, Rice CM, Jones RB, Schenck EJ, Kaner RJ, Chadburn A, Zhao Z, Pascual V, Elemento O, Schwartz RE, Buenrostro JD, Niec RE, Barrat FJ, Lief L, Sun JC, Ucar D, Josefowicz SZ. 2023. Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell. 186(18):3882-3902.e24. Pubmed: 37597510 DOI:S0092-8674(23)00796-1

Abstract

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.
Copyright © 2023 Elsevier Inc. All rights reserved.

Related Faculty

Photo of Jason Buenrostro

The Buenrostro lab is broadly dedicated to advancing our knowledge of gene regulation and the downstream consequences on cell fate decisions.

Search Menu