Citation

Shadrach JL, Wagers AJ. 2011. Stem cells for skeletal muscle repair. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 366(1575):2297-306. Pubmed: 21727135 DOI:10.1098/rstb.2011.0027

Abstract

Skeletal muscle is a highly specialized tissue composed of non-dividing, multi-nucleated muscle fibres that contract to generate force in a controlled and directed manner. Skeletal muscle is formed during embryogenesis from a subset of muscle precursor cells, which generate both differentiated muscle fibres and specialized muscle-forming stem cells known as satellite cells. Satellite cells remain associated with muscle fibres after birth and are responsible for muscle growth and repair throughout life. Failure in satellite cell function can lead to delayed, impaired or failed recovery after muscle injury, and such failures become increasingly prominent in cases of progressive muscle disease and in old age. Recent progress in the isolation of muscle satellite cells and elucidation of the cellular and molecular mediators controlling their activity indicate that these cells represent promising therapeutic targets. Such satellite cell-based therapies may involve either direct cell replacement or development of drugs that enhance endogenous muscle repair mechanisms. Here, we discuss recent breakthroughs in understanding both the cell intrinsic and extrinsic regulators that determine the formation and function of muscle satellite cells, as well as promising paths forward to realizing their full therapeutic potential.

Related Faculty

Photo of Amy Wagers

Amy Wagers seeks to change the way we repair our tissues after an injury. Her research focuses on defining the factors and mechanisms that regulate the migration, expansion, and regenerative potential of adult blood-forming and muscle-forming stem cells.

Search Menu