Doug Melton is pursuing a cure for type 1 diabetes. His lab studies the developmental biology of the pancreas, using that information to grow and develop pancreatic cells (islets of Langerhans). In parallel, they investigate ways to protect beta cells from autoimmune attack.
Research in the Melton Lab
The Melton Lab focuses on the developmental biology of the pancreas. We wish to understand how the pancreas normally develops and use that information to grow and develop pancreatic cells (islets of Langerhans). One goal is to understand how vertebrates make an organ from undifferentiated embryonic cells. A longer-term goal has practical significance: if our studies are successful, it should be possible to apply our conclusions to human cells and provide a source of insulin-producing beta-cells for diabetics.
Our main challenge is to understand the precursor or stem cells that give rise to the pancreas and to characterize the key gene products that specify cell fates and functions during organogenesis. To this end, we use several vertebrate organisms, including frogs and chickens but the majority of our studies are done with mice and human embryonic stem cells. We use a wide variety of techniques, including functional genomics, chemical screening, tissue explants and grafting for analyzing inductive signals, and developmental genetics for direct assays of gene function. The aim of all our experiments is to understand the genes, cells, and tissues that direct pancreatic organogenesis.
Biosketch
Melton earned a bachelor’s degree in biology from the University of Illinois and then went to Cambridge University in England as a Marshall Scholar. He earned a BA in history and philosophy of science at Cambridge and remained there to earn a PhD in molecular biology at Trinity College and the MRC Laboratory of Molecular Biology. He is co-director of Harvard’s Stem Cell Institute and an Investigator of the Howard Hughes Medical Institute. He is also a co-founder and scientific advisory board member of Semma Therapeutics, scientific advisory board member of Fidelity Biosciences, and fiduciary board member of Bluebird Bio.
Related
-
The Quest To Cure Diabetes: From Insulin To The Body's Own Cells
Listen on WBUR -
Improving cell therapy for diabetes
Read it on the Harvard Gazette -
Epidemic of autoimmune diseases calls for action
Read it on the Harvard Gazette -
BAIRT Program to accelerate a cure for diabetes
Read it on the Harvard Gazette
Teaching
-
SCRB 197Frontiers in Therapeutics
How realistic are promises to “eliminate” diseases and to “personalize” medicine? This course looks at biological principles underlying therapeutics, ranging from those described first in Egyptian papyri to those under development today (using chemicals, proteins, cells, and genetic manipulations) and based on traditional philosophies and on science. As part of the class, students will have the opportunity to design novel approaches to diseases today without cure.