Wang, L., Lee, S.-J. & Verdine, G.L., 2015. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase. J Biol Chem , 290 (28) , pp. 17096-105.Abstract
The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site.
Hilinski, G.J., et al., 2014. Stitched α-helical peptides via bis ring-closing metathesis. J Am Chem Soc , 136 (35) , pp. 12314-22.Abstract
Conformationally stabilized α-helical peptides are capable of inhibiting disease-relevant intracellular or extracellular protein-protein interactions in vivo. We have previously reported that the employment of ring-closing metathesis to introduce a single all-hydrocarbon staple along one face of an α-helical peptide greatly increases α-helical content, binding affinity to a target protein, cell penetration through active transport, and resistance to proteolytic degradation. In an effort to improve upon this technology for stabilizing a peptide in a bioactive α-helical conformation, we report the discovery of an efficient and selective bis ring-closing metathesis reaction leading to peptides bearing multiple contiguous staples connected by a central spiro ring junction. Circular dichroism spectroscopy, NMR, and computational analyses have been used to investigate the conformation of these "stitched" peptides, which are shown to exhibit remarkable thermal stabilities. Likewise, trypsin proteolysis assays confirm the achievement of a structural rigidity unmatched by peptides bearing a single staple. Furthermore, fluorescence-activated cell sorting (FACS) and confocal microscopy assays demonstrate that stitched peptides display superior cell penetrating ability compared to their stapled counterparts, suggesting that this technology may be useful not only in the context of enhancing the drug-like properties of α-helical peptides but also in producing potent agents for the intracellular delivery of proteins and oligonucleotides.
Sung, R.-J., et al., 2013. Structural and biochemical analysis of DNA helix invasion by the bacterial 8-oxoguanine DNA glycosylase MutM. J Biol Chem , 288 (14) , pp. 10012-23.Abstract
MutM is a bacterial DNA glycosylase that serves as the first line of defense against the highly mutagenic 8-oxoguanine (oxoG) lesion, catalyzing glycosidic bond cleavage of oxoG to initiate base excision DNA repair. Previous work has shown that MutM actively interrogates DNA for the presence of an intrahelical oxoG lesion. This interrogation process involves significant buckling and bending of the DNA to promote extrusion of oxoG from the duplex. Structural snapshots have revealed several different highly conserved residues that are prominently inserted into the duplex in the vicinity of the target oxoG before and after base extrusion has occurred. However, the roles of these helix-invading residues during the lesion recognition and base extrusion process remain unclear. In this study, we set out to probe the function of residues Phe(114) and Met(77) in oxoG recognition and repair. Here we report a detailed biochemical and structural characterization of MutM variants containing either a F114A or M77A mutation, both of which showed significant decreases in the efficiency of oxoG repair. These data reveal that Met(77) plays an important role in stabilizing the lesion-extruded conformation of the DNA. Phe(114), on the other hand, appears to destabilize the intrahelical state of the oxoG lesion, primarily by buckling the target base pair. We report the observation of a completely unexpected interaction state, in which the target base pair is ruptured but remains fully intrahelical; this structure vividly illustrates the disruptive influence of MutM on the target base pair.
Shim, S.Y., Kim, Y.-W. & Verdine, G.L., 2013. A new i, i + 3 peptide stapling system for α-helix stabilization. Chem Biol Drug Des , 82 (6) , pp. 635-42.Abstract
We have previously shown that the incorporation of an 8-atom all-hydrocarbon 'staple' at positions i and i + 3 of a synthetic peptide results in substantial stabilization of the α-helical conformation. As part of our ongoing effort to explore the scope and utility of all-hydrocarbon stapling systems, we have investigated and report herein the properties of a new i, i + 3 stapling system that employs a 6-carbon cross-link.
Baek, S., et al., 2012. Structure of the stapled p53 peptide bound to Mdm2. J Am Chem Soc , 134 (1) , pp. 103-6.Abstract
Mdm2 is a major negative regulator of the tumor suppressor p53 protein, a protein that plays a crucial role in maintaining genome integrity. Inactivation of p53 is the most prevalent defect in human cancers. Inhibitors of the Mdm2-p53 interaction that restore the functional p53 constitute potential nongenotoxic anticancer agents with a novel mode of action. We present here a 2.0 Å resolution structure of the Mdm2 protein with a bound stapled p53 peptide. Such peptides, which are conformationally and proteolytically stabilized with all-hydrocarbon staples, are an emerging class of biologics that are capable of disrupting protein-protein interactions and thus have broad therapeutic potential. The structure represents the first crystal structure of an i, i + 7 stapled peptide bound to its target and reveals that rather than acting solely as a passive conformational brace, a staple can intimately interact with the surface of a protein and augment the binding interface.
Qi, Y., et al., 2012. Strandwise translocation of a DNA glycosylase on undamaged DNA. Proc Natl Acad Sci U S A , 109 (4) , pp. 1086-91.Abstract
Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.
Verdine, G.L. & Hilinski, G.J., 2012. Stapled peptides for intracellular drug targets. Methods Enzymol , 503 , pp. 3-33.Abstract
Proteins that engage in intracellular interactions with other proteins are widely considered among the most biologically appealing yet chemically intractable targets for drug discovery. The critical interaction surfaces of these proteins typically lack the deep hydrophobic involutions that enable potent, selective targeting by small organic molecules, and their localization within the cell puts them beyond the reach of protein therapeutics. Considerable interest has therefore arisen in next-generation targeting molecules that combine the broad target recognition capabilities of protein therapeutics with the robust cell-penetrating ability of small molecules. One type that has shown promise in early-stage studies is hydrocarbon-stapled α-helical peptides, a novel class of synthetic miniproteins locked into their bioactive α-helical fold through the site-specific introduction of a chemical brace, an all-hydrocarbon staple. Stapling can greatly improve the pharmacologic performance of peptides, increasing their target affinity, proteolytic resistance, and serum half-life while conferring on them high levels of cell penetration through endocytic vesicle trafficking. Here, we discuss considerations crucial to the successful design and evaluation of potent stapled peptide interactions, our intention being to facilitate the broad application of this technology to intractable targets of both basic biologic interest and potential therapeutic value.
Gude, L., et al., 2012. Mapping targetable sites on human telomerase RNA pseudoknot/template domain using 2'-OMe RNA-interacting polynucleotide (RIPtide) microarrays. J Biol Chem , 287 (22) , pp. 18843-53.Abstract
Most cellular RNAs engage in intrastrand base-pairing that gives rise to complex three-dimensional folds. This self-pairing presents an impediment toward binding of the RNA by nucleic acid-based ligands. An important step in the discovery of RNA-targeting ligands is therefore to identify those regions in a folded RNA that are accessible toward the nucleic acid-based ligand. Because the folding of RNA targets can involve interactions between nonadjacent regions and employ both Watson-Crick and non-Watson-Crick base-pairing, screening of candidate binder ensembles is typically necessary. Microarray-based screening approaches have shown great promise in this regard and have suggested that achieving complete sequence coverage would be a valuable attribute of a next generation system. Here, we report a custom microarray displaying a library of RNA-interacting polynucleotides comprising all possible 2'-OMe RNA sequences from 4- to 8-nucleotides in length. We demonstrate the utility of this array in identifying RNA-interacting polynucleotides that bind tightly and specifically to the highly conserved, functionally essential template/pseudoknot domain of human telomerase RNA and that inhibit telomerase function in vitro.
Sung, R.-J., et al., 2012. Sequence-dependent structural variation in DNA undergoing intrahelical inspection by the DNA glycosylase MutM. J Biol Chem , 287 (22) , pp. 18044-54.Abstract
MutM, a bacterial DNA-glycosylase, plays a critical role in maintaining genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions to initiate base excision DNA repair. The task faced by MutM of locating rare oxoG residues embedded in an overwhelming excess of undamaged bases is especially challenging given the close structural similarity between oxoG and its normal progenitor, guanine (G). MutM actively interrogates the DNA to detect the presence of an intrahelical, fully base-paired oxoG, whereupon the enzyme promotes extrusion of the target nucleobase from the DNA duplex and insertion into the extrahelical active site. Recent structural studies have begun to provide the first glimpse into the protein-DNA interactions that enable MutM to distinguish an intrahelical oxoG from G; however, these initial studies left open the important question of how MutM can recognize oxoG residues embedded in 16 different neighboring sequence contexts (considering only the 5'- and 3'-neighboring base pairs). In this study we set out to understand the manner and extent to which intrahelical lesion recognition varies as a function of the 5'-neighbor. Here we report a comprehensive, systematic structural analysis of the effect of the 5'-neighboring base pair on recognition of an intrahelical oxoG lesion. These structures reveal that MutM imposes the same extrusion-prone ("extrudogenic") backbone conformation on the oxoG lesion irrespective of its 5'-neighbor while leaving the rest of the DNA relatively free to adjust to the particular demands of individual sequences.
Crenshaw, C.M., et al., 2012. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J Biol Chem , 287 (30) , pp. 24916-28.Abstract
A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.
Didovyk, A. & Verdine, G.L., 2012. Structural origins of DNA target selection and nucleobase extrusion by a DNA cytosine methyltransferase. J Biol Chem , 287 (48) , pp. 40099-105.Abstract
BACKGROUND: How DNA 5-cytosine methyltransferases (DCMTases) select their substrate nucleobase for extrusion from DNA duplex is poorly understood. RESULTS: The crystal structure of a pre-extrusion M.HaeIII DCMTase-substrate DNA complex is reported here. CONCLUSION: M.HaeIII selects its substrate cytosine for extrusion by selectively interfering with its stacking and hydrogen bonding interactions within the DNA duplex. SIGNIFICANCE: This is the first structural elucidation of the target cytosine selection by a DCMTase. Epigenetic methylation of cytosine residues in DNA is an essential element of genome maintenance and function in organisms ranging from bacteria to humans. DNA 5-cytosine methyltransferase enzymes (DCMTases) catalyze cytosine methylation via reaction intermediates in which the DNA is drastically remodeled, with the target cytosine residue extruded from the DNA helix and plunged into the active site pocket of the enzyme. We have determined a crystal structure of M.HaeIII DCMTase in complex with its DNA substrate at a previously unobserved state, prior to extrusion of the target cytosine and frameshifting of the DNA recognition sequence. The structure reveals that M.HaeIII selects the target cytosine and destabilizes its base-pairing through a precise, focused, and coordinated assault on the duplex DNA, which isolates the target cytosine from its nearest neighbors and thereby facilitates its extrusion from DNA.
Grossmann, T.N., et al., 2012. Inhibition of oncogenic Wnt signaling through direct targeting of β-catenin. Proc Natl Acad Sci U S A , 109 (44) , pp. 17942-7.Abstract
Aberrant activation of signaling by the Wnt pathway is strongly implicated in the onset and progression of numerous types of cancer. Owing to the persistent dependence of these tumors on Wnt signaling for growth and survival, inhibition of this pathway is considered an attractive mechanism-based therapeutic approach. Oncogenic activation of Wnt signaling can ensue from a variety of distinct aberrations in the signaling pathway, but most share the common feature of causing increased cellular levels of β-catenin by interfering with its constitutive degradation. β-Catenin serves as a central hub in Wnt signaling by engaging in crucial protein-protein interactions with both negative and positive effectors of the pathway. Direct interference with these protein-protein interactions is a biologically compelling approach toward suppression of β-catenin hyperactivity, but such interactions have proven intransigent with respect to small-molecule targeting. Hence β-catenin remains an elusive target for translational cancer therapy. Here we report the discovery of a hydrocarbon-stapled peptide that directly targets β-catenin and interferes with its ability to serve as a transcriptional coactivator for T-cell factor (TCF) proteins, the downstream transcriptional regulators of the Wnt pathway.
Kim, Y.-W., Grossmann, T.N. & Verdine, G.L., 2011. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc , 6 (6) , pp. 761-71.Abstract
This protocol provides a detailed procedure for the preparation of stapled α-helical peptides, which have proven their potential as useful molecular probes and as next-generation therapeutics. Two crucial features of this protocol are (i) the construction of peptide substrates containing hindered α-methyl, α-alkenyl amino acids and (ii) the ring-closing olefin metathesis (RCM) of the resulting resin-bound peptide substrates. The stapling systems described in this protocol, namely bridging one or two turns of an α-helix, are highly adaptable to most peptide sequences, resulting in favorable RCM kinetics, helix stabilization and promotion of cellular uptake.
Qi, Y., et al., 2010. Entrapment and structure of an extrahelical guanine attempting to enter the active site of a bacterial DNA glycosylase, MutM. J Biol Chem , 285 (2) , pp. 1468-78.Abstract
MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding the interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.
Kim, Y.-W., Kutchukian, P.S. & Verdine, G.L., 2010. Introduction of all-hydrocarbon i,i+3 staples into alpha-helices via ring-closing olefin metathesis. Org Lett , 12 (13) , pp. 3046-9.Abstract
The introduction of all-hydrocarbon i,i+3 staples into alpha-helical peptide scaffolds via ring-closing olefin metathesis (RCM) between two alpha-methyl,alpha-pentenylglycine residues incorporated at i and i+3 positions, which lie on the same face of the helix, has been investigated. The reactions were found to be highly dependent upon the side-chain stereochemistry of the amino acids undergoing RCM. The i,i+3 stapling system established here provides a potentially useful alternative to the well-established i,i+4 stapling system now in widespread use.
Bowman, B.R., et al., 2010. Structure of Escherichia coli AlkA in complex with undamaged DNA. J Biol Chem , 285 (46) , pp. 35783-91.Abstract
Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.
Kim, Y.-W. & Verdine, G.L., 2009. Stereochemical effects of all-hydrocarbon tethers in i,i+4 stapled peptides. Bioorg Med Chem Lett , 19 (9) , pp. 2533-6.Abstract
The stereochemical effects of the hydrocarbon crosslink on the conformation and cellular uptake of i,i+4 stapled peptides were studied. Compared to its S,S-configurated counterpart, the crosslink bearing the R,R-configuration provided a significantly diminished helix stabilizing effect and conferred less efficient cellular uptake on the stapled peptides. These results suggest that the vesicular trafficking pathway employed by cells to take up stapled peptides is sensitive to the extent of helical character in the peptide, with greater helicity conferring increased cellular uptake.
Kutchukian, P.S., et al., 2009. All-atom model for stabilization of alpha-helical structure in peptides by hydrocarbon staples. J Am Chem Soc , 131 (13) , pp. 4622-7.Abstract
Recent work has shown that the incorporation of an all-hydrocarbon "staple" into peptides can greatly increase their alpha-helix propensity, leading to an improvement in pharmaceutical properties such as proteolytic stability, receptor affinity, and cell permeability. Stapled peptides thus show promise as a new class of drugs capable of accessing intractable targets such as those that engage in intracellular protein-protein interactions. The extent of alpha-helix stabilization provided by stapling has proven to be substantially context dependent, requiring cumbersome screening to identify the optimal site for staple incorporation. In certain cases, a staple encompassing one turn of the helix (attached at residues i and i+4) furnishes greater helix stabilization than one encompassing two turns (i,i+7 staple), which runs counter to expectation based on polymer theory. These findings highlight the need for a more thorough understanding of the forces that underlie helix stabilization by hydrocarbon staples. Here we report all-atom Monte Carlo folding simulations comparing unmodified peptides derived from RNase A and BID BH3 with various i,i+4 and i,i+7 stapled versions thereof. The results of these simulations were found to be in quantitative agreement with experimentally determined helix propensities. We also discovered that staples can stabilize quasi-stable decoy conformations, and that the removal of these states plays a major role in determining the helix stability of stapled peptides. Finally, we critically investigate why our method works, exposing the underlying physical forces that stabilize stapled peptides.
Lee, S. & Verdine, G.L., 2009. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Proc Natl Acad Sci U S A , 106 (44) , pp. 18497-502.Abstract
Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A.oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases have been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.
Blainey, P.C., et al., 2009. Nonspecifically bound proteins spin while diffusing along DNA. Nat Struct Mol Biol , 16 (12) , pp. 1224-9.Abstract
It is known that DNA-binding proteins can slide along the DNA helix while searching for specific binding sites, but their path of motion remains obscure. Do these proteins undergo simple one-dimensional (1D) translational diffusion, or do they rotate to maintain a specific orientation with respect to the DNA helix? We measured 1D diffusion constants as a function of protein size while maintaining the DNA-protein interface. Using bootstrap analysis of single-molecule diffusion data, we compared the results to theoretical predictions for pure translational motion and rotation-coupled sliding along the DNA. The data indicate that DNA-binding proteins undergo rotation-coupled sliding along the DNA helix and can be described by a model of diffusion along the DNA helix on a rugged free-energy landscape. A similar analysis including the 1D diffusion constants of eight proteins of varying size shows that rotation-coupled sliding is a general phenomenon. The average free-energy barrier for sliding along the DNA was 1.1 +/- 0.2 k(B)T. Such small barriers facilitate rapid search for binding sites.
Moellering, R.E., et al., 2009. Direct inhibition of the NOTCH transcription factor complex. Nature , 462 (7270) , pp. 182-8.Abstract
Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized alpha-helical peptides that target a critical protein-protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.
Pakotiprapha, D., et al., 2009. A structural model for the damage-sensing complex in bacterial nucleotide excision repair. J Biol Chem , 284 (19) , pp. 12837-44.Abstract
Nucleotide excision repair is distinguished from other DNA repair pathways by its ability to process a wide range of structurally unrelated DNA lesions. In bacteria, damage recognition is achieved by the UvrA.UvrB ensemble. Here, we report the structure of the complex between the interaction domains of UvrA and UvrB. These domains are necessary and sufficient for full-length UvrA and UvrB to associate and thereby form the DNA damage-sensing complex of bacterial nucleotide excision repair. The crystal structure and accompanying biochemical analyses suggest a model for the complete damage-sensing complex.
Nam, K., Verdine, G.L. & Karplus, M., 2009. Analysis of an anomalous mutant of MutM DNA glycosylase leads to new insights into the catalytic mechanism. J Am Chem Soc , 131 (51) , pp. 18208-9.Abstract
To determine the factors involved in the specific recognition function of a bacterial 8-oxoguanine (oxoG) DNA glycosylase MutM, a series of potentials of mean force and thermodynamic integration simulations were performed with the wild type and a single-point E3Q mutant of MutM bound to oxoG and G-containing DNA, respectively. Interestingly, the mutation of the catalytically important Glu3 (E3) residue to Gln (Q) significantly changes the free-energy surface so that oxoG can bind stably in the active site of the enzyme. Free-energy simulations with the protonated and deprotonated E3 residue further showed that the protonation of the catalytically important E3 residue plays a key role in distinguishing oxoG versus G in the active site by lowering the free energy of oxoG preferentially in the active site. The results suggest that MutM utilizes the thermodynamic recognition mechanism for stable binding of the lesion base in the active site of the enzyme in addition to kinetic discrimination at the early stage of the base extrusion for facilitated extrusion of oxoG.
Qi, Y., et al., 2009. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Nature , 462 (7274) , pp. 762-6.Abstract
How living systems detect the presence of genotoxic damage embedded in a million-fold excess of undamaged DNA is an unresolved question in biology. Here we have captured and structurally elucidated a base-excision DNA repair enzyme, MutM, at the stage of initial encounter with a damaged nucleobase, 8-oxoguanine (oxoG), nested within a DNA duplex. Three structures of intrahelical oxoG-encounter complexes are compared with sequence-matched structures containing a normal G base in place of an oxoG lesion. Although the protein-DNA interfaces in the matched complexes differ by only two atoms-those that distinguish oxoG from G-their pronounced structural differences indicate that MutM can detect a lesion in DNA even at the earliest stages of encounter. All-atom computer simulations show the pathway by which encounter of the enzyme with the lesion causes extrusion from the DNA duplex, and they elucidate the critical free energy difference between oxoG and G along the extrusion pathway.
Pakotiprapha, D., et al., 2008. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Mol Cell , 29 (1) , pp. 122-33.Abstract
The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.2 A structure of UvrA from Bacillus stearothermophilus, we observe that the nucleotide-binding sites are formed in an intramolecular fashion and are not at the dimer interface as is typically found in other ABC ATPases. UvrA also harbors two unique domains; we show that one of these is required for interaction with UvrB, its partner in lesion recognition. In addition, UvrA contains three zinc modules, the number and ligand sphere of which differ from previously published models. Structural analysis, biochemical experiments, surface electrostatics, and sequence conservation form the basis for models of ATP-modulated dimerization, UvrA-UvrB interaction, and DNA binding during the search for lesions.
Komazin-Meredith, G., et al., 2008. The positively charged surface of herpes simplex virus UL42 mediates DNA binding. J Biol Chem , 283 (10) , pp. 6154-61.Abstract
Herpes simplex virus DNA polymerase is a heterodimer composed of UL30, a catalytic subunit, and UL42, a processivity subunit. Mutations that decrease DNA binding by UL42 decrease long chain DNA synthesis by the polymerase. The crystal structure of UL42 bound to the C terminus of UL30 revealed an extensive positively charged surface ("back face"). We tested two hypotheses, 1) the C terminus of UL30 affects DNA binding and 2) the positively charged back face mediates DNA binding. Addressing the first hypothesis, we found that the presence of a peptide corresponding to the UL30 C terminus did not result in altered binding of UL42 to DNA. Addressing the second hypothesis, previous work showed that substitution of four conserved arginine residues on the basic face with alanines resulted in decreased DNA affinity. We tested the affinities for DNA and the stimulation of long chain DNA synthesis of mutants in which the four conserved arginine residues were substituted individually or together with lysines and also a mutant in which a conserved glutamine residue was substituted with an arginine to increase positive charge on the back face. We also engineered cysteines onto this surface to permit disulfide cross-linking studies. Last, we assayed the effects of ionic strength on DNA binding by UL42 to estimate the number of ions released upon binding. Our results taken together strongly suggest that the basic back face of UL42 contacts DNA and that positive charge on this surface is important for this interaction.
Lee, S., Radom, C.T. & Verdine, G.L., 2008. Trapping and structural elucidation of a very advanced intermediate in the lesion-extrusion pathway of hOGG1. J Am Chem Soc , 130 (25) , pp. 7784-5.Abstract
Here we present the first structure of a very advanced intermediate in the lesion-extrusion pathway of a DNA glycosylase, human 8-oxoguanine DNA glycosylase (hOGG1), and a substrate DNA containing a mutagenic lesion, 8-oxoguanine (oxoG). The structure was obtained by irradiation and flash-freezing of a disulfide-cross-linked (DXLed) complex of hOgg1 bound to DNA containing a novel photocaged derivative of oxoG. The X-ray structure reveals that, upon irradiation, the oxoG lesion has transited from the exosite to the active site pocket, but has not undergone cleavage by the enzyme. Furthermore, all but one of the specificity-determining interactions between the lesion and the enzyme are unformed in the flashed complex (FC), because active site functionality and elements of the DNA backbone are mispositioned. This structure thus provides a first glimpse into the structure of a very late-stage intermediate in the lesion-extrusion pathway--the latest observed to date for any glycosylase--in which the oxoG has undergone insertion into the enzyme active site following photodeprotection, but the enzyme and DNA have not yet completed the slower process of adjusting to the presence of the lesion in the active site.
  • 1 of 6
  • »