Citation

Waszczuk MA, Eaton NR, Krueger RF, Shackman AJ, Waldman ID, Zald DH, Lahey BB, Patrick CJ, Conway CC, Ormel J, Hyman SE, Fried EI, Forbes MK, Docherty AR, Althoff RR, Bach B, Chmielewski M, DeYoung CG, Forbush KT, Hallquist M, Hopwood CJ, Ivanova MY, Jonas KG, Latzman RD, Markon KE, Mullins-Sweatt SN, Pincus AL, Reininghaus U, South SC, Tackett JL, Watson D, Wright AGC, Kotov R. 2020. Redefining phenotypes to advance psychiatric genetics: Implications from hierarchical taxonomy of psychopathology. Journal of abnormal psychology. 129(2):143-161. Pubmed: 31804095 DOI:10.1037/abn0000486

Abstract

Genetic discovery in psychiatry and clinical psychology is hindered by suboptimal phenotypic definitions. We argue that the hierarchical, dimensional, and data-driven classification system proposed by the Hierarchical Taxonomy of Psychopathology (HiTOP) consortium provides a more effective approach to identifying genes that underlie mental disorders, and to studying psychiatric etiology, than current diagnostic categories. Specifically, genes are expected to operate at different levels of the HiTOP hierarchy, with some highly pleiotropic genes influencing higher order psychopathology (e.g., the general factor), whereas other genes conferring more specific risk for individual spectra (e.g., internalizing), subfactors (e.g., fear disorders), or narrow symptoms (e.g., mood instability). We propose that the HiTOP model aligns well with the current understanding of the higher order genetic structure of psychopathology that has emerged from a large body of family and twin studies. We also discuss the convergence between the HiTOP model and findings from recent molecular studies of psychopathology indicating broad genetic pleiotropy, such as cross-disorder SNP-based shared genetic covariance and polygenic risk scores, and we highlight molecular genetic studies that have successfully redefined phenotypes to enhance precision and statistical power. Finally, we suggest how to integrate a HiTOP approach into future molecular genetic research, including quantitative and hierarchical assessment tools for future data-collection and recommendations concerning phenotypic analyses. (PsycINFO Database Record (c) 2020 APA, all rights reserved).

Related Faculty

Photo of Steven Hyman

Steven Hyman is Director of the Stanley Center for Psychiatric Research at the Broad Institute and Chair of the Schizophrenia Spectrum Biomarkers Consortium (SSBC), a consortium identifying objective biomarkers to enable better diagnosis of and treatment for schizophrenia and related illnesses.

Search Menu