Galazo MJ, Sweetser DA, Macklis JD. 2023. Tle4 controls both developmental acquisition and early post-natal maturation of corticothalamic projection neuron identity. Cell reports. 42(8):112957. Pubmed: 37561632 DOI:S2211-1247(23)00968-3


Identities of distinct neuron subtypes are specified during embryonic development, then maintained during post-natal maturation. In cerebral cortex, mechanisms controlling early acquisition of neuron-subtype identities have become increasingly understood. However, mechanisms controlling neuron-subtype identity stability during post-natal maturation are largely unexplored. We identify that Tle4 is required for both early acquisition and post-natal stability of corticothalamic neuron-subtype identity. Embryonically, Tle4 promotes acquisition of corticothalamic identity and blocks emergence of core characteristics of subcerebral/corticospinal projection neuron identity, including gene expression and connectivity. During the first post-natal week, when corticothalamic innervation is ongoing, Tle4 is required to stabilize corticothalamic neuron identity, limiting interference from differentiation programs of developmentally related neuron classes. We identify a deacetylation-based epigenetic mechanism by which TLE4 controls Fezf2 expression level by corticothalamic neurons. This contributes to distinction of cortical output subtypes and ensures identity stability for appropriate maturation of corticothalamic neurons.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

Related Faculty

Photo of Jeffrey D. Macklis

Jeffrey Macklis investigates molecular controls and mechanisms over neuron subtype specification, development, diversity, axon guidance-circuit formation, and pathology in the cerebral cortex. His lab seeks to apply developmental controls toward brain and spinal cord regeneration and directed differentiation for in vitro mechanistic modeling using human assembloids.

Search Menu