Citation

McAlpine CS, Kiss MG, Zuraikat FM, Cheek D, Schiroli G, Amatullah H, Huynh P, Bhatti MZ, Wong LP, Yates AG, Poller WC, Mindur JE, Chan CT, Janssen H, Downey J, Singh S, Sadreyev RI, Nahrendorf M, Jeffrey KL, Scadden DT, Naxerova K, St-Onge MP, Swirski FK. 2022. Sleep exerts lasting effects on hematopoietic stem cell function and diversity. The Journal of experimental medicine. 219(11). Pubmed: 36129517 DOI:10.1084/jem.20220081

Abstract

A sleepless night may feel awful in its aftermath, but sleep's revitalizing powers are substantial, perpetuating the idea that convalescent sleep is a consequence-free physiological reset. Although recent studies have shown that catch-up sleep insufficiently neutralizes the negative effects of sleep debt, the mechanisms that control prolonged effects of sleep disruption are not understood. Here, we show that sleep interruption restructures the epigenome of hematopoietic stem and progenitor cells (HSPCs) and increases their proliferation, thus reducing hematopoietic clonal diversity through accelerated genetic drift. Sleep fragmentation exerts a lasting influence on the HSPC epigenome, skewing commitment toward a myeloid fate and priming cells for exaggerated inflammatory bursts. Combining hematopoietic clonal tracking with mathematical modeling, we infer that sleep preserves clonal diversity by limiting neutral drift. In humans, sleep restriction alters the HSPC epigenome and activates hematopoiesis. These findings show that sleep slows decay of the hematopoietic system by calibrating the hematopoietic epigenome, constraining inflammatory output, and maintaining clonal diversity.
© 2022 McAlpine et al.

Related Faculty

Photo of David Scadden

David Scadden’s laboratory is dedicated to discovering the principles governing blood cell production, with the ultimate goal of guiding the development of therapies for blood disorders and cancer.

Search Menu