Citation

Sanders SJ, Neale BM, Huang H, Werling DM, An JY, Dong S, Abecasis G, Arguello PA, Blangero J, Boehnke M, Daly MJ, Eggan K, Geschwind DH, Glahn DC, Goldstein DB, Gur RE, Handsaker RE, McCarroll SA, Ophoff RA, Palotie A, Pato CN, Sabatti C, State MW, Willsey AJ, Hyman SE, Addington AM, Lehner T, Freimer NB. 2017. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nature neuroscience. 20(12):1661-1668. Pubmed: 29184211 DOI:10.1038/s41593-017-0017-9

Abstract

As technology advances, whole genome sequencing (WGS) is likely to supersede other genotyping technologies. The rate of this change depends on its relative cost and utility. Variants identified uniquely through WGS may reveal novel biological pathways underlying complex disorders and provide high-resolution insight into when, where, and in which cell type these pathways are affected. Alternatively, cheaper and less computationally intensive approaches may yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating genome, through pilot WGS projects, will be critical to determine which of these two extremes best represents reality. With large cohorts, well-defined risk loci, and a compelling need to understand the underlying biology, psychiatric disorders have a role to play in this preliminary WGS assessment. The WGSPD consortium will integrate data for 18,000 individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, and major depressive disorder, along with over 150,000 controls.

Related Faculty

Photo of Kevin Eggan

Kevin Eggan investigates the mechanisms that cause motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS), and seeks to translate new discoveries into new therapeutic options for patients.

Photo of Steven Hyman

Steven Hyman is Director of the Stanley Center for Psychiatric Research at the Broad Institute, where his goal is to drive the genetics of schizophrenia to the point of diminishing returns with respect to biological information, with bipolar disorder following closely behind.

Search Menu