Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT. 1994. Static circumferential tangential modulus of human atherosclerotic tissue. Journal of biomechanics. 27(2):195-204. Pubmed: 8132688


The mechanical properties of atherosclerotic plaque may be of critical importance to the processes of plaque rupture, the most common antecedent of myocardial infarction. To investigate the effects of plaque structure and applied tensile stress on the static circumferential tangential modulus of atherosclerotic plaque, the stress-strain behavior of 26 human aortic intimal plaques was studied. Intimal plaques were collected during routine autopsies of 21 patients from the abdominal (n = 19) and thoracic (n = 2) aorta and were classified by histological analysis as cellular (n = 12), hypocellular (n = 9), and calcified (n = 5). At a physiologic applied circumferential tensile stress of 25 kPa, the tangential moduli of cellular, hypocellular, and calcified specimens were 927 +/- 468 kPa, 2312 +/- 2180 kPa, and 1466 +/- 1284 kPa, respectively. There was a nonsignificant difference in tangential modulus at 25 kPa stress between specimens classified as cellular and hypocellular (p = 0.098), cellular and calcified (p = 0.410), and hypocellular and calcified (p = 0.380). This is in marked contrast to the previously measured radial compressive behavior of plaque tissue, which showed that cellular, hypocellular, and calcified plaques were significantly different in their modulus. In tension, all 26 plaques tested demonstrated a statistically significant increase in tangential modulus with increasing applied circumferential stress. We conclude that the static circumferential tangential modulus of atherosclerotic plaque, unlike its radial compressive modulus, is not significantly affected by the degree of cellularity and calcification determined by histological characterization.(ABSTRACT TRUNCATED AT 250 WORDS)

Related Faculty

Photo of Rich Lee

Rich Lee seeks to understand heart failure and metabolic diseases that accompany human aging, and translate that understanding into therapies. Lee is an active clinician, regularly treating patients at Brigham and Women’s Hospital.

Search Menu