Citation

Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P. 1996. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arteriosclerosis, thrombosis, and vascular biology. 16(8):1070-3. Pubmed: 8696948

Abstract

Atherosclerotic plaque rupture may occur when regions of weakened extracellular matrix are subjected to increased mechanical stresses. Since collagen is a major determinant of extracellular matrix strength, enzymes that degrade collagen may play an important role in destabilizing the atherosclerotic lesion. To test the hypothesis that matrix metalloproteinase 1 (interstitial collagenase, or MMP-1), which initiates degradation of fibrillar collagens, colocalizes with increased stress in the fibrous cap of the atherosclerotic lesion, 12 unruptured human coronary lesions were studied. Finite-element analysis was used to determine the distribution of stress in the lesion, with estimates of material properties from previous measurements of human tissues. A computerized image analysis system was used to determine the distribution of immunoreactive MMP-1 within the fibrous tissue of the lesion. There was a significant correlation between immunoreactive MMP-1 and circumferential tensile stress in the fibrous cap within a given lesion (median Spearman rank correlation coefficient, .36; interquartile range, -.02 to .81; P < .02). Within a given lesion, the highest-stress region had twofold greater MMP-1 expression than the lowest-stress regions. In unruptured human atherosclerotic coronary lesions, overexpression of MMP-1 is associated with increased circumferential stress in the fibrous plaque. Degradation and weakening of the collagenous extracellular matrix at these critical high-stress regions may play a role in the pathogenesis of plaque rupture and acute ischemic syndromes.

Related Faculty

Photo of Rich Lee

Rich Lee seeks to understand heart failure and metabolic diseases that accompany human aging, and translate that understanding into therapies. Lee is an active clinician, regularly treating patients at Brigham and Women’s Hospital.

Search Menu