Fast EM, Sporrij A, Manning M, Rocha EL, Yang S, Zhou Y, Guo J, Baryawno N, Barkas N, Scadden D, Camargo F, Zon LI. 2021. External signals regulate continuous transcriptional states in hematopoietic stem cells. eLife. 10. Pubmed: 34939923 DOI:10.7554/eLife.66512


Hematopoietic stem cells (HSCs) must ensure adequate blood cell production following distinct external stressors. A comprehensive understanding of in vivo heterogeneity and specificity of HSC responses to external stimuli is currently lacking. We performed single-cell RNA sequencing (scRNA-Seq) on functionally validated mouse HSCs and LSK (Lin-, c-Kit+, Sca1+) progenitors after in vivo pharmacological perturbation of niche signals interferon, granulocyte colony-stimulating factor (G-CSF), and prostaglandin. We identified six HSC states that are characterized by enrichment but not exclusive expression of marker genes. External signals induced rapid transitions between HSC states but transcriptional response varied both between external stimulants and within the HSC population for a given perturbation. In contrast to LSK progenitors, HSCs were characterized by a greater link between molecular signatures at baseline and in response to external stressors. Chromatin analysis of unperturbed HSCs and LSKs by scATAC-Seq suggested some HSC-specific, cell intrinsic predispositions to niche signals. We compiled a comprehensive resource of HSC- and LSK progenitor-specific chromatin and transcriptional features that represent determinants of signal receptiveness and regenerative potential during stress hematopoiesis.
© 2021, Fast et al.

Related Faculty

Photo of Len Zon

The Zon laboratory aims to dissect how assaults to the hematopoietic system cause severe diseases such as leukemias, lymphomas, and anemias. They investigate hematopoietic development and disease using chemical screens, genetic screens, and analysis of novel transgenic lines in zebrafish.

Photo of David Scadden

David Scadden’s laboratory is dedicated to discovering the principles governing blood cell production, with the ultimate goal of guiding the development of therapies for blood disorders and cancer.

Search Menu