Citation

Erlich SS, McComb JG, Hyman S, Weiss MH. 1989. Ultrastructure of the orbital pathway for cerebrospinal fluid drainage in rabbits. Journal of neurosurgery. 70(6):926-31. Pubmed: 2715821

Abstract

An increasing number of physiological and morphological studies indicate that cerebrospinal fluid (CSF) drains via nonarachnoidal pathways in several mammalian species. Ultrastructural tracer studies were undertaken to examine the orbital route for CSF absorption in the rabbit. At the termination of the optic nerve subarachnoid space, an area of connective tissue containing numerous small tortuous channels is present. Ferritin (molecular weight 400,000) infused into the ventricles at normal and increased intraventricular pressure was present in these channels by 15 minutes postinfusion, and subsequently reached the intraorbital connective tissue. Elevating the intraventricular pressure did not noticeably alter the morphological appearance of this region or change the gross distribution pattern of the ferritin. Ferritin did not penetrate the scleral barrier to reach the choriocapillaris, nor did it breach the arachnoid barrier layer proximal to the transitional zone at the optic subarachnoid space to reach the dura mater. These results are very similar to those described for the hamster orbital region and the rabbit cribriform region. These experiments support the concept that macromolecules exit the subarachnoid space at the termination of the optic nerve via open channels, and that no significant barrier to drainage of macromolecules in CSF is present at this location.

Related Faculty

Photo of Steven Hyman

Steven Hyman is Director of the Stanley Center for Psychiatric Research at the Broad Institute and Chair of the Schizophrenia Spectrum Biomarkers Consortium (SSBC), a consortium identifying objective biomarkers to enable better diagnosis of and treatment for schizophrenia and related illnesses.

Search Menu