Citation

Zwick RK, Kasparek P, Palikuqi B, Viragova S, Weichselbaum L, McGinnis CS, McKinley KL, Rathnayake A, Vaka D, Nguyen V, Trentesaux C, Reyes E, Gupta AR, Gartner ZJ, Locksley RM, Gardner JM, Itzkovitz S, Boffelli D, Klein OD. 2023. Epithelial zonation along the mouse and human small intestine defines five discrete metabolic domains. bioRxiv : the preprint server for biology. Pubmed: 37790430 DOI:10.1101/2023.09.20.558726

Abstract

A key aspect of nutrient absorption is the exquisite division of labor across the length of the small intestine, with individual classes of micronutrients taken up at different positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum, and ileum. By examining fine-scale longitudinal segmentation of the mouse and human small intestines, we identified transcriptional signatures and upstream regulatory factors that define five domains of nutrient absorption, distinct from the three traditional sections. Spatially restricted expression programs were most prominent in nutrient-absorbing enterocytes but initially arose in intestinal stem cells residing in three regional populations. While a core signature was maintained across mice and humans with different diets and environments, domain properties were influenced by dietary changes. We established the functions of and in patterning lipid metabolism in distal domains and generated a predictive model of additional transcription factors that direct domain identity. Molecular domain identity can be detected with machine learning, representing the first systematic method to computationally identify specific intestinal regions in mice. These findings provide a foundational framework for the identity and control of longitudinal zonation of absorption along the proximal:distal small intestinal axis.

Related Faculty

Photo of Kara McKinley

Kara McKinley’s laboratory studies regeneration in the uterus and the biology of menstruation.

Search Menu