Citation

Czupryn A, Zhou YD, Chen X, McNay D, Anderson MP, Flier JS, Macklis JD. 2011. Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science (New York, N.Y.). 334(6059):1133-7. Pubmed: 22116886 DOI:10.1126/science.1209870

Abstract

Evolutionarily old and conserved homeostatic systems in the brain, including the hypothalamus, are organized into nuclear structures of heterogeneous and diverse neuron populations. To investigate whether such circuits can be functionally reconstituted by synaptic integration of similarly diverse populations of neurons, we generated physically chimeric hypothalami by microtransplanting small numbers of embryonic enhanced green fluorescent protein-expressing, leptin-responsive hypothalamic cells into hypothalami of postnatal leptin receptor-deficient (db/db) mice that develop morbid obesity. Donor neurons differentiated and integrated as four distinct hypothalamic neuron subtypes, formed functional excitatory and inhibitory synapses, partially restored leptin responsiveness, and ameliorated hyperglycemia and obesity in db/db mice. These experiments serve as a proof of concept that transplanted neurons can functionally reconstitute complex neuronal circuitry in the mammalian brain.

Related Faculty

Photo of Jeffrey D. Macklis

Jeffrey Macklis investigates molecular controls and mechanisms over neuron subtype specification, development, diversity, axon guidance-circuit formation, and pathology in the cerebral cortex. His lab seeks to apply developmental controls toward brain and spinal cord regeneration and directed differentiation for in vitro mechanistic modeling using human assembloids.

Search Menu