Berke JD, Paletzki RF, Aronson GJ, Hyman SE, Gerfen CR.
1998.
A complex program of striatal gene expression induced by dopaminergic stimulation.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
18(14):5301-10.
Pubmed: 9651213
Dopamine acting in the striatum is necessary for normal movement and motivation. Drugs that change striatal dopamine neurotransmission can have long-term effects on striatal physiology and behavior; these effects are thought to involve alterations in gene expression. Using the 6-hydroxydopamine lesion model of Parkinson's disease and differential display PCR, we have identified a set of more than 30 genes whose expression rapidly increases in response to stimulation of striatal dopamine D1 receptors. The induced mRNAs include both novel and previously described genes, with diverse time courses of expression. Some genes are expressed at near-maximal levels within 30 min, whereas others show no substantial induction until 2 hr or more after stimulation. Some of the induced genes, such as CREM, CHOP, and MAP kinase phosphatase-1, may be components of a homeostatic response to excessive stimulation. Others may be part of a genetic program involved in cellular and synaptic plasticity. A very similar set of genes is induced in unlesioned animals by administration of the psychostimulant cocaine or the antipsychotic eticlopride, although in distinct striatal cell populations. In contrast to some previously described early genes, most of the novel genes are not induced in cortex by apomorphine, indicating specificity of induction. Thus we have identified novel components of a complex, coordinated genetic program that is induced in striatal cells in response to various dopaminergic manipulations.