Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA. 2007. A multipotent progenitor domain guides pancreatic organogenesis. Developmental cell. 13(1):103-14. Pubmed: 17609113


The mammalian pancreas is constructed during embryogenesis by multipotent progenitors, the identity and function of which remain poorly understood. We performed genome-wide transcription factor expression analysis of the developing pancreas to identify gene expression domains that may represent distinct progenitor cell populations. Five discrete domains were discovered. Genetic lineage-tracing experiments demonstrate that one specific domain, located at the tip of the branching pancreatic tree, contains multipotent progenitors that produce exocrine, endocrine, and duct cells in vivo. These multipotent progenitors are Pdx1(+)Ptf1a(+)cMyc(High)Cpa1(+) and negative for differentiated lineage markers. The outgrowth of multipotent tip cells leaves behind differentiated progeny that form the trunk of the branches. These findings define a multipotent compartment within the developing pancreas and suggest a model of how branching is coordinated with cell type specification. In addition, this comprehensive analysis of >1,100 transcription factors identified genes that are likely to control critical decisions in pancreas development and disease.

Related Faculty

Photo of Bill Anderson

Bill Anderson is the Director of Education and provides administrative leadership and support for the undergraduate, graduate, and medical teaching mission in the Department of Stem Cell and Regenerative Biology at Harvard University.

Photo of Doug Melton

Doug Melton is pursuing a cure for type 1 diabetes. His lab studies the developmental biology of the pancreas, using that information to grow and develop pancreatic cells (islets of Langerhans). In parallel, they investigate ways to protect beta cells from autoimmune attack.

Search Menu