Citation

Mead PE, Deconinck AE, Huber TL, Orkin SH, Zon LI. 2001. Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development (Cambridge, England). 128(12):2301-8. Pubmed: 11493549

Abstract

Hematopoietic stem cells are derived from ventral mesoderm during vertebrate development. Gene targeting experiments in the mouse have demonstrated key roles for the basic helix-loop-helix transcription factor SCL and the GATA-binding protein GATA-1 in hematopoiesis. When overexpressed in Xenopus animal cap explants, SCL and GATA-1 are each capable of specifying mesoderm to become blood. Forced expression of either factor in whole embryos, however, does not lead to ectopic blood formation. This apparent paradox between animal cap assays and whole embryo phenotype has led to the hypothesis that additional factors are involved in specifying hematopoietic mesoderm. SCL and GATA-1 interact in a transcriptional complex with the LIM domain protein LMO-2. We have cloned the Xenopus homolog of LMO-2 and show that it is expressed in a similar pattern to SCL during development. LMO-2 can specify hematopoietic mesoderm in animal cap assays. SCL and LMO-2 act synergistically to expand the blood island when overexpressed in whole embryos. Furthermore, co-expression of GATA-1 with SCL and LMO-2 leads to embryos that are ventralized and have blood throughout the dorsal-ventral axis. The synergistic effect of SCL, LMO-2 and GATA-1, taken together with the findings that these factors can form a complex in vitro, suggests that this complex specifies mesoderm to become blood during embryogenesis.

Related Faculty

Photo of Len Zon

The Zon laboratory aims to dissect how assaults to the hematopoietic system cause severe diseases such as leukemias, lymphomas, and anemias. They investigate hematopoietic development and disease using chemical screens, genetic screens, and analysis of novel transgenic lines in zebrafish.

Search Menu