Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. 2011. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature biotechnology. 29(2):149-53. Pubmed: 21248753 DOI:10.1038/nbt.1775


The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator-like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.

Related Faculty

Photo of Paola Arlotta

Dr. Arlotta is interested in understanding the molecular laws that govern the birth, differentiation and assembly of the cerebral cortex, the part of the brain that controls how we sense, move and think. She integrates developmental and evolutionary knowledge to investigate therapies for brain repair and for modeling neuropsychiatric disease.

Search Menu