Wu HJ, Landshammer A, Stamenova EK, Bolondi A, Kretzmer H, Meissner A, Michor F. 2021. Topological isolation of developmental regulators in mammalian genomes. Nature communications. 12(1):4897. Pubmed: 34385432 DOI:10.1038/s41467-021-24951-7


Precise control of mammalian gene expression is facilitated through epigenetic mechanisms and nuclear organization. In particular, insulated chromosome structures are important for regulatory control, but the phenotypic consequences of their boundary disruption on developmental processes are complex and remain insufficiently understood. Here, we generated deeply sequenced Hi-C data for human pluripotent stem cells (hPSCs) that allowed us to identify CTCF loop domains that have highly conserved boundary CTCF sites and show a notable enrichment of individual developmental regulators. Importantly, perturbation of such a boundary in hPSCs interfered with proper differentiation through deregulated distal enhancer-promoter activity. Finally, we found that germline variations affecting such boundaries are subject to purifying selection and are underrepresented in the human population. Taken together, our findings highlight the importance of developmental gene isolation through chromosomal folding structures as a mechanism to ensure their proper expression.
© 2021. The Author(s).

Related Faculty

Photo of Franziska Michor

Franziska Michor uses the tools of theoretical evolutionary biology, applied mathematics, statistics, and computational biology to address important questions in cancer research.

Search Menu