Citation

Thiru P, Kern DM, McKinley KL, Monda JK, Rago F, Su KC, Tsinman T, Yarar D, Bell GW, Cheeseman IM. 2014. Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Molecular biology of the cell. 25(13):1983-94. Pubmed: 24829384 DOI:10.1091/mbc.E14-03-0837

Abstract

The key player in directing proper chromosome segregation is the macromolecular kinetochore complex, which mediates DNA-microtubule interactions. Previous studies testing individual kinetochore genes documented examples of their overexpression in tumors relative to normal tissue, leading to proposals that up-regulation of specific kinetochore genes may promote tumor progression. However, kinetochore components do not function in isolation, and previous studies did not comprehensively compare the expression behavior of kinetochore components. Here we analyze the expression behavior of the full range of human kinetochore components in diverse published expression compendia, including normal tissues and tumor samples. Our results demonstrate that kinetochore genes are rarely overexpressed individually. Instead, we find that core kinetochore genes are coordinately regulated with other cell division genes under virtually all conditions. This expression pattern is strongly correlated with the expression of the forkhead transcription factor FoxM1, which binds to the majority of cell division promoters. These observations suggest that kinetochore gene up-regulation in cancer reflects a general activation of the cell division program and that altered expression of individual kinetochore genes is unlikely to play a causal role in tumorigenesis.
© 2014 Thiru et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Related Faculty

Photo of Kara McKinley

Kara McKinley’s laboratory studies regeneration in the uterus and the biology of menstruation.

Search Menu