Shlevkov E, Basu H, Bray MA, Sun Z, Wei W, Apaydin K, Karhohs K, Chen PF, Smith JLM, Wiskow O, Roet K, Huang X, Eggan K, Carpenter AE, Kleiman RJ, Schwarz TL. 2019. A High-Content Screen Identifies TPP1 and Aurora B as Regulators of Axonal Mitochondrial Transport. Cell reports. 28(12):3224-3237.e5. Pubmed: 31533043 DOI:10.1016/j.celrep.2019.08.035


Dysregulated axonal trafficking of mitochondria is linked to neurodegenerative disorders. We report a high-content screen for small-molecule regulators of the axonal transport of mitochondria. Six compounds enhanced mitochondrial transport in the sub-micromolar range, acting via three cellular targets: F-actin, Tripeptidyl peptidase 1 (TPP1), or Aurora Kinase B (AurKB). Pharmacological inhibition or small hairpin RNA (shRNA) knockdown of each target promotes mitochondrial axonal transport in rat hippocampal neurons and induced pluripotent stem cell (iPSC)-derived human cortical neurons and enhances mitochondrial transport in iPSC-derived motor neurons from an amyotrophic lateral sclerosis (ALS) patient bearing one copy of SOD1 mutation. Our work identifies druggable regulators of axonal transport of mitochondria, provides broadly applicable methods for similar image-based screens, and suggests that restoration of proper axonal trafficking of mitochondria can be achieved in human ALS neurons.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

Related Faculty

Photo of Kevin Eggan

Kevin Eggan investigates the mechanisms that cause motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS), and seeks to translate new discoveries into new therapeutic options for patients.

Search Menu