Citation

Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. 2000. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 97(21):11307-12. Pubmed: 11027332

Abstract

Human embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of in vitro fertilized human blastocysts. We examined the potential of eight growth factors [basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), activin-A, bone morphogenic protein 4 (BMP-4), hepatocyte growth factor (HGF), epidermal growth factor (EGF), beta nerve growth factor (betaNGF), and retinoic acid] to direct the differentiation of human ES-derived cells in vitro. We show that human ES cells that have initiated development as aggregates (embryoid bodies) express a receptor for each of these factors, and that their effects are evident by differentiation into cells with different epithelial or mesenchymal morphologies. Differentiation of the cells was assayed by expression of 24 cell-specific molecular markers that cover all embryonic germ layers and 11 different tissues. Each growth factor has a unique effect that may result from directed differentiation and/or cell selection, and we can divide the overall effects of the factors into three categories: growth factors (Activin-A and TGFbeta1) that mainly induce mesodermal cells; factors (retinoic acid, EGF, BMP-4, and bFGF) that activate ectodermal and mesodermal markers; and factors (NGF and HGF) that allow differentiation into the three embryonic germ layers, including endoderm. None of the growth factors directs differentiation exclusively to one cell type. This analysis sets the stage for directing differentiation of human ES cells in culture and indicates that multiple human cell types may be enriched in vitro by specific factors.

Related Faculty

Photo of Doug Melton

Doug Melton is pursuing a cure for type 1 diabetes. His lab studies the developmental biology of the pancreas, using that information to grow and develop pancreatic cells (islets of Langerhans). In parallel, they investigate ways to protect beta cells from autoimmune attack.

Search Menu