Palomo V, Perez DI, Roca C, Anderson C, Rodríguez-Muela N, Perez C, Morales-Garcia JA, Reyes JA, Campillo NE, Perez-Castillo AM, Rubin LL, Timchenko L, Gil C, Martinez A. 2017. Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases. Journal of medicinal chemistry. 60(12):4983-5001. Pubmed: 28548834 DOI:10.1021/acs.jmedchem.7b00395


Glycogen synthase kinase 3 β (GSK-3β) is a central target in several unmet diseases. To increase the specificity of GSK-3β inhibitors in chronic treatments, we developed small molecules allowing subtle modulation of GSK-3β activity. Design synthesis, structure-activity relationships, and binding mode of quinoline-3-carbohydrazide derivatives as allosteric modulators of GSK-3β are presented here. Furthermore, we show how allosteric binders may overcome the β-catenin side effects associated with strong GSK-3β inhibition. The therapeutic potential of some of these modulators has been tested in human samples from patients with congenital myotonic dystrophy type 1 (CDM1) and spinal muscular atrophy (SMA) patients. We found that compound 53 improves delayed myogenesis in CDM1 myoblasts, while compounds 1 and 53 have neuroprotective properties in SMA-derived cells. These findings suggest that the allosteric modulators of GSK-3β may be used for future development of drugs for DM1, SMA, and other chronic diseases where GSK-3β inhibition exhibits therapeutic effects.

Related Faculty

Photo of Lee Rubin

Lee Rubin investigates the key molecular mediators of different neurodegenerative diseases, with the ultimate goal of finding effective preclinical therapeutic candidates.

Search Menu