Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM. 1998. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. The Journal of clinical investigation. 101(11):2567-78. Pubmed: 9616228


We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.

Related Faculty

Photo of Mark C. Fishman

Mark C. Fishman’s group studies the heart-brain connection. They employ a range of genetic, developmental, and neurobiological tools in zebrafish to understand what the heart tells the brain, and how critical internal sensory systems adjust homeostatic and somatic behaviors, including social interactions.

Search Menu