Zhou X, Franklin RA, Adler M, Carter TS, Condiff E, Adams TS, Pope SD, Philip NH, Meizlish ML, Kaminski N, Medzhitov R. 2022. Microenvironmental sensing by fibroblasts controls macrophage population size. Proceedings of the National Academy of Sciences of the United States of America. 119(32):e2205360119. Pubmed: 35930670 DOI:10.1073/pnas.2205360119


Animal tissues comprise diverse cell types. However, the mechanisms controlling the number of each cell type within tissue compartments remain poorly understood. Here, we report that different cell types utilize distinct strategies to control population numbers. Proliferation of fibroblasts, stromal cells important for tissue integrity, is limited by space availability. In contrast, proliferation of macrophages, innate immune cells involved in defense, repair, and homeostasis, is constrained by growth factor availability. Examination of density-dependent gene expression in fibroblasts revealed that Hippo and TGF-β target genes are both regulated by cell density. We found YAP1, the transcriptional coactivator of the Hippo signaling pathway, directly regulates expression of , the lineage-specific growth factor for macrophages, through an enhancer of that is specifically active in fibroblasts. Activation of YAP1 in fibroblasts elevates expression and is sufficient to increase the number of macrophages at steady state. Our data also suggest that expression programs in fibroblasts that change with density may result from sensing of mechanical force through actin-dependent mechanisms. Altogether, we demonstrate that two different modes of population control are connected and coordinated to regulate cell numbers of distinct cell types. Sensing of the tissue environment may serve as a general strategy to control tissue composition.

Related Faculty

Photo of Ruth Franklin

Ruth Franklin’s laboratory explores the role of the innate immune system in tissue repair and homeostasis, with a focus on the communication between macrophages and non-immune cells within tissues.

Search Menu