Mechanistic insights into human disease may enable the development of treatments that are effective in broad patient populations. The confluence of gene-editing technologies, induced pluripotent stem cells, and genome-wide association as well as DNA sequencing studies is enabling new approaches for illuminating the molecular basis of human disease. We discuss the opportunities and challenges of combining these technologies and provide a workflow for interrogating the contribution of disease-associated candidate genetic variants to disease-relevant phenotypes. Finally, we discuss the potential utility of human pluripotent stem cells for placing disease-associated genetic variants into molecular pathways.
Copyright © 2013 Elsevier Inc. All rights reserved.

Related Faculty

Photo of Kevin Eggan

Kevin Eggan investigates the mechanisms that cause motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS), and seeks to translate new discoveries into new therapeutic options for patients.

Search Menu