Although agents that inhibit specific oncogenic kinases have been successful in a subset of cancers, there are currently few treatment options for malignancies that lack a targetable oncogenic driver. Nevertheless, during tumor evolution cancers engage a variety of protective pathways, which may provide alternative actionable dependencies. Here, we identify a promising combination therapy that kills -mutant tumors by triggering catastrophic oxidative stress. Specifically, we show that mTOR and HDAC inhibitors kill aggressive nervous system malignancies and shrink tumors by converging on the TXNIP/thioredoxin antioxidant pathway, through cooperative effects on chromatin and transcription. Accordingly, TXNIP triggers cell death by inhibiting thioredoxin and activating apoptosis signal-regulating kinase 1 (ASK1). Moreover, this drug combination also kills -mutant and -mutant non-small cell lung cancers. Together, these studies identify a promising therapeutic combination for several currently untreatable malignancies and reveal a protective nodal point of convergence between these important epigenetic and oncogenic enzymes. There are no effective therapies for - or -mutant cancers. We show that combined mTOR/HDAC inhibitors kill these RAS-driven tumors by causing catastrophic oxidative stress. This study identifies a promising therapeutic combination and demonstrates that selective enhancement of oxidative stress may be more broadly exploited for developing cancer therapies. .
©2017 American Association for Cancer Research.