Just S, Hirth S, Berger IM, Fishman MC, Rottbauer W. 2016. The mediator complex subunit Med10 regulates heart valve formation in zebrafish by controlling Tbx2b-mediated Has2 expression and cardiac jelly formation. Biochemical and biophysical research communications. 477(4):581-588. Pubmed: 27343557 DOI:S0006-291X(16)31006-3


In search for novel key regulators of cardiac valve formation, we isolated the zebrafish cardiac valve mutant ping pong (png). We find that an insertional promoter mutation within the zebrafish mediator complex subunit 10 (med10) gene is leading to impaired heart valve formation. Expression of the T-box transcription factor 2b (Tbx2b), known to be essential in cardiac valve development, is severely reduced in png mutant hearts. We demonstrate here that transient reconstitution of Tbx2b expression rescues AV canal development in png mutant zebrafish. By contrast, overexpression of Forkhead box N4 (Foxn4), a known upstream regulator of Tbx2b, is not capable to reconstitute tbx2b expression and heart valve formation in Med10-deficient png mutant hearts. Interestingly, hyaluronan synthase 2 (has2), a known downstream target of Tbx2 and producer of hyaluronan (HA) - a major ECM component of the cardiac jelly and critical for proper heart valve development - is completely absent in ping pong mutant hearts. We propose here a rather unique role of Med10 in orchestrating cardiac valve formation by mediating Foxn4 dependent tbx2b transcription, expression of Has2 and subsequently proper development of the cardiac jelly.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

Related Faculty

Photo of Mark C. Fishman

Mark C. Fishman’s group studies the heart-brain connection. They employ a range of genetic, developmental, and neurobiological tools in zebrafish to understand what the heart tells the brain, and how critical internal sensory systems adjust homeostatic and somatic behaviors, including social interactions.

Search Menu