Jeanisch R, Eggan K, Humpherys D, Rideout W, Hochedlinger K. 2002. Nuclear cloning, stem cells, and genomic reprogramming. Cloning and stem cells. 4(4):389-96. Pubmed: 12630413


The generation of adult animals by nuclear cloning from adult donor cells is extremely inefficient, with most clones dying soon after implantation. In contrast, cloning from embryonic stem cell donor nuclei is significanty more efficient than from adult donor cells. However, regardless of donor cell type, all clones that survive to birth and beyond suffer serious phenotypic and gene expression abnormalities. All available evidence is consistent with the notion that the anomalous phenotypes of cloned animals are caused by faulty epigenetic reprogramming of the donor nucleus. Faulty reprogramming appears to be caused by the cloning process itself as well as by the epigenetic state of the donor nucleus. In contrast to reproductive cloning, faulty reprogramming of the donor nucleus does not tend to interfere with the application of nuclear transfer technology for therapeutic purposes (therapeutic cloning).

Related Faculty

Photo of Kevin Eggan

Kevin Eggan investigates the mechanisms that cause motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS), and seeks to translate new discoveries into new therapeutic options for patients.

Search Menu