Irikura K, Huang PL, Ma J, Lee WS, Dalkara T, Fishman MC, Dawson TM, Snyder SH, Moskowitz MA. 1995. Cerebrovascular alterations in mice lacking neuronal nitric oxide synthase gene expression. Proceedings of the National Academy of Sciences of the United States of America. 92(15):6823-7. Pubmed: 7542777


Nitric oxide (NO) is known to mediate increases in regional cerebral blood flow elicited by CO2 inhalation. In mice with deletion of the gene for neuronal NO synthase (NOS), CO2 inhalation augments cerebral blood flow to the same extent as in wild-type mice. However, unlike wild-type mice, the increased flow in mutants is not blocked by the NOS inhibition, N omega-nitro-L-arginine, and CO2 exposure fails to increase brain levels of cGMP. Topical acetylcholine elicits vasodilation in the mutants which is blocked by N omega-nitro-L-arginine, indicating normal functioning of endothelial NOS. Moreover, immunohistochemical staining for endothelial NOS is normal in the mutants. Thus, following loss of neuronal NOS, the cerebral circulatory response is maintained by a compensatory system not involving NO.

Related Faculty

Photo of Mark C. Fishman

Mark C. Fishman’s group studies the heart-brain connection. They employ a range of genetic, developmental, and neurobiological tools in zebrafish to understand what the heart tells the brain, and how critical internal sensory systems adjust homeostatic and somatic behaviors, including social interactions.

Search Menu