Citation

Flynn RA, Do BT, Rubin AJ, Calo E, Lee B, Kuchelmeister H, Rale M, Chu C, Kool ET, Wysocka J, Khavari PA, Chang HY. 2016. 7SK-BAF axis controls pervasive transcription at enhancers. Nature structural & molecular biology. 23(3):231-8. Pubmed: 26878240 DOI:10.1038/nsmb.3176

Abstract

RNA functions at enhancers remain mysterious. Here we show that the 7SK small nuclear RNA (snRNA) inhibits enhancer transcription by modulating nucleosome position. 7SK occupies enhancers and super enhancers genome wide in mouse and human cells, and it is required to limit enhancer-RNA initiation and synthesis in a manner distinct from promoter pausing. Clustered elements at super enhancers uniquely require 7SK to prevent convergent transcription and DNA-damage signaling. 7SK physically interacts with the BAF chromatin-remodeling complex, recruits BAF to enhancers and inhibits enhancer transcription by modulating chromatin structure. In turn, 7SK occupancy at enhancers coincides with that of Brd4 and is exquisitely sensitive to the bromodomain inhibitor JQ1. Thus, 7SK uses distinct mechanisms to counteract the diverse consequences of pervasive transcription that distinguish super enhancers, enhancers and promoters.

Related Faculty

Photo of Ryan Flynn

Ryan Flynn’s laboratory is focused on the exploration and discovery of how biopolymers like RNA and glycans work together to control cellular processes in the context of human disease.

Search Menu