De la Monte SM, Federoff HJ, Ng SC, Grabczyk E, Fishman MC. 1989. GAP-43 gene expression during development: persistence in a distinctive set of neurons in the mature central nervous system. Brain research. Developmental brain research. 46(2):161-8. Pubmed: 2720952


GAP-43 is a rapidly transported axonal protein most prominently expressed in regenerating and developing nerves. However, the low level persistence of GAP-43 in the adult CNS where growth and regenerative capacity are minimal may additionally indicate a role for this molecule in neuronal remodeling. Previous studies have revealed GAP-43 immunoreactivity in neurites throughout many regions of the CNS. To identify the CNS neurons that express GAP-43 at different stages of development, we utilized in situ hybridization and immunocytochemistry; the latter was performed with an antibody that recognizes GAP-43 immunoreactivity in both perikarya and neurites. In the perinatal period GAP-43 is expressed in all neurons. Subsequently its expression becomes progressively restricted such that by maturity most neurons no longer express detectable levels, although GAP-43 expression is still moderately high in the adult entorhinal cortex, and strikingly high in the adult hippocampus and olfactory bulb. In light of current notions about the function of GAP-43, it is tempting to speculate that this anatomy denotes neurons engaged in structural remodeling and functional plasticity.

Related Faculty

Photo of Mark C. Fishman

Mark C. Fishman’s group studies the heart-brain connection. They employ a range of genetic, developmental, and neurobiological tools in zebrafish to understand what the heart tells the brain, and how critical internal sensory systems adjust homeostatic and somatic behaviors, including social interactions.

Search Menu