The development and wiring of the central nervous system is a remarkable biological process that starts with the generation of and interaction between a large diversity of cell types. Our understanding of the developmental logic that drives cellular diversification in the mammalian brain comes, to a large extent, from studies in rodents. However, identifying the unique cellular processes underlying primate corticogenesis has been slow, due to the challenges associated with directly observing and manipulating brain tissue from these species. Recent technological advances in two areas hold promise to accelerate discovery of the mechanisms that govern human brain development, evolution, and pathophysiology of disease. Molecular profiling of large numbers of single cells can now capture cell identity and cell states within a complex tissue. Furthermore, modeling aspects of human organogenesis in vitro, even for tissues as complex as the brain, has been advanced by the use of three-dimensional organoid systems. Here, we describe how these approaches have been applied to date and how they promise to uncover the principles of cell diversification in the developing human brain.
Copyright © 2019. Published by Elsevier Ltd.

Related Faculty

Photo of Paola Arlotta

Dr. Arlotta is interested in understanding the molecular laws that govern the birth, differentiation and assembly of the cerebral cortex, the part of the brain that controls how we sense, move and think. She integrates developmental and evolutionary knowledge to investigate therapies for brain repair and for modeling neuropsychiatric disease.

Search Menu