Citation

Abstract

During embryonic development, cells in an uncommitted pluripotent state undergo progressive epigenetic changes that lock them into a final restrictive differentiated state. However, recent advances have shown that not only is it possible for a fully differentiated cell to revert back to a pluripotent state, a process called nuclear reprogramming, but also that differentiated cells can be directly converted from one class into another without generating progenitor intermediates, a process known as direct lineage conversion. In this review, we discuss recent progress made in direct lineage reprogramming of differentiated cells into neurons and discuss some of the therapeutic implications of the findings.

Related Faculty

Photo of Paola Arlotta

Dr. Arlotta is interested in understanding the molecular laws that govern the birth, differentiation and assembly of the cerebral cortex, the part of the brain that controls how we sense, move and think. She integrates developmental and evolutionary knowledge to investigate therapies for brain repair and for modeling neuropsychiatric disease.

Search Menu