Citation

Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon LI. 2007. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes & development. 21(11):1382-95. Pubmed: 17510286

Abstract

Embryonal rhabdomyosarcoma (ERMS) is a devastating cancer with specific features of muscle differentiation that can result from mutational activation of RAS family members. However, to date, RAS pathway activation has not been reported in a majority of ERMS patients. Here, we have created a zebrafish model of RAS-induced ERMS, in which animals develop externally visible tumors by 10 d of life. Microarray analysis and cross-species comparisons identified two conserved gene signatures found in both zebrafish and human ERMS, one associated with tumor-specific and tissue-restricted gene expression in rhabdomyosarcoma and a second comprising a novel RAS-induced gene signature. Remarkably, our analysis uncovered that RAS pathway activation is exceedingly common in human RMS. We also created a new transgenic coinjection methodology to fluorescently label distinct subpopulations of tumor cells based on muscle differentiation status. In conjunction with fluorescent activated cell sorting, cell transplantation, and limiting dilution analysis, we were able to identify the cancer stem cell in zebrafish ERMS. When coupled with gene expression studies of this cell population, we propose that the zebrafish RMS cancer stem cell shares similar self-renewal programs as those found in activated satellite cells.

Related Faculty

Photo of Len Zon

The Zon laboratory aims to dissect how assaults to the hematopoietic system cause severe diseases such as leukemias, lymphomas, and anemias. They investigate hematopoietic development and disease using chemical screens, genetic screens, and analysis of novel transgenic lines in zebrafish.

Photo of Wolfram Goessling

Wolfram Goessling uses the zebrafish model to study regulators of liver development and to explore endodermal progenitor cell specification, organ differentiation, and growth.

Search Menu