Publications

Säwén, P., et al., 2016. Mitotic History Reveals Distinct Stem Cell Populations and Their Contributions to Hematopoiesis. Cell Rep , 14 (12) , pp. 2809-18. PMCID: PMC4819906.Abstract

Homeostasis of short-lived blood cells is dependent on rapid proliferation of immature precursors. Using a conditional histone 2B-mCherry-labeling mouse model, we characterize hematopoietic stem cell (HSC) and progenitor proliferation dynamics in steady state and following several types of induced stress. HSC proliferation following HSC transplantation into lethally irradiated mice is fundamentally different not only from native hematopoiesis but also from other stress contexts. Whereas transplantation promoted sustained, long-term proliferation of HSCs, both cytokine-induced mobilization and acute depletion of selected blood cell lineages elicited very limited recruitment of HSCs to the proliferative pool. By coupling mCherry-based analysis of proliferation history with multiplex gene expression analyses on single cells, we have found that HSCs can be stratified into four distinct subtypes. These subtypes have distinct molecular signatures and differ significantly in their reconstitution potentials, showcasing the power of tracking proliferation history when resolving functional heterogeneity of HSCs.

Stewart, M.H., et al., 2015. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal in mice. Blood , 125 (13) , pp. 2075-8. PMCID: PMC4467872.Abstract

Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer; however, its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias. Constitutive genetic deletion of Jarid1b did not impact steady-state hematopoiesis. In contrast, acute deletion of Jarid1b from bone marrow increased peripheral blood T cells and, following secondary transplantation, resulted in loss of bone marrow reconstitution. Our results reveal that deletion of Jarid1b compromises hematopoietic stem cell (HSC) self-renewal capacity and suggest that Jarid1b is a positive regulator of HSC potential.

Ebina, W. & Rossi, D.J., 2015. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J , 34 (6) , pp. 694-709. PMID: 25712209. [Epub ahead of print].Abstract

De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.

Singbrant, S., et al., 2015. Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells. Exp Hematol , 43 (9) , pp. 756-9.Abstract

Transplantation of hematopoietic stem cells (HSCs) to treat hematologic disorders is routinely used in the clinic. However, HSC therapy is hindered by the requirements of finding human leukocyte antigen (HLA)-matched donors and attaining sufficient numbers of long-term HSCs in the graft. Therefore, ex vivo expansion of transplantable HSCs remains one of the "holy grails" of hematology. Without the ability to maintain and expand human HSCs in vitro, two complementary approaches involving cellular reprogramming to generate transplantable HSCs have emerged. Reprogrammed HSCs represent a potentially inexhaustible supply of autologous tissue. On March 18th, 2015, Dr. George Q. Daley and Dr. Derrick J. Rossi, two pioneers in the field, presented and discussed their most recent research on these topics in a webinar organized by the International Society for Experimental Hematology (ISEH). Here, we summarize these seminars and discuss the possibilities and challenges in the field of hematopoietic specification.

Lee, J., et al., 2015. Progress and obstacles towards generating hematopoietic stem cells from pluripotent stem cells. Curr Opin Hematol , 22 (4) , pp. 317-23. PMCID: PMC4459525.Abstract

PURPOSE OF REVIEW: Human pluripotent stem cells (PSCs) have the potential to provide an inexhaustible source of hematopoietic stem cells (HSCs) that could be used in disease modeling and in clinical applications such as transplantation. Although the goal of deriving definitive HSCs from PSCs has not been achieved, recent studies indicate that progress is being made. This review will provide information on the current status of deriving HSCs from PSCs, and will highlight existing challenges and obstacles. RECENT FINDINGS: Recent strides in HSC generation from PSCs has included derivation of developmental intermediates, identification of transcription factors and small molecules that support hematopoietic derivation, and the development of strategies to recapitulate niche-like conditions. SUMMARY: Despite considerable progress in defining the molecular events driving derivation of hematopoietic progenitor cells from PSCs, the generation of robust transplantable HSCs from PSCs remains elusive. We propose that this goal can be facilitated by better understanding of the regulatory pathways governing HSC identity, development of HSC supportive conditions, and examining the marrow homing properties of PSC-derived HSCs.

Beerman, I. & Rossi, D.J., 2015. Epigenetic Control of Stem Cell Potential during Homeostasis, Aging, and Disease. Cell Stem Cell , 16 (6) , pp. 613-25. PMCID: PMC4469343.Abstract

Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.

Stewart, M.H., et al., 2014. Growth hormone receptor signaling is dispensable for HSC function and aging. Blood , 124 (20) , pp. 3076-80. PMCID: PMC4231418.Abstract

Growth hormone receptor (Ghr) signaling is important in a wide variety of cellular processes including aging; however, the role of Ghr signaling in hematopoietic stem cell (HSC) biology remains unexplored. Within the hematopoietic system, Ghr is expressed in a highly HSC-specific manner and is significantly upregulated during aging. Exposure of young and old HSCs to recombinant growth hormone ex vivo led to diminished short-term reconstitution and restored B-cell output from old HSCs. Hematopoietic-specific genetic deletion of Ghr neither impacted steady-state hematopoiesis nor serial transplantation potential. Repeat challenge with 5-fluorouracil showed that Ghr was dispensable for HSC activation and homeostatic recovery in vivo and, after challenge, Ghr-deficient HSCs functioned normally through serial transplantation. Although exogenous Gh induces age-dependent HSC effects, these results indicate that Ghr signaling appears largely dispensable for HSC function and aging.

Mandal, P.K., et al., 2014. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell , 15 (5) , pp. 643-52. PMCID: PMC4269831.Abstract

Genome editing via CRISPR/Cas9 has rapidly become the tool of choice by virtue of its efficacy and ease of use. However, CRISPR/Cas9-mediated genome editing in clinically relevant human somatic cells remains untested. Here, we report CRISPR/Cas9 targeting of two clinically relevant genes, B2M and CCR5, in primary human CD4+ T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs). Use of single RNA guides led to highly efficient mutagenesis in HSPCs but not in T cells. A dual guide approach improved gene deletion efficacy in both cell types. HSPCs that had undergone genome editing with CRISPR/Cas9 retained multilineage potential. We examined predicted on- and off-target mutations via target capture sequencing in HSPCs and observed low levels of off-target mutagenesis at only one site. These results demonstrate that CRISPR/Cas9 can efficiently ablate genes in HSPCs with minimal off-target mutagenesis, which could have broad applicability for hematopoietic cell-based therapy.

Beerman, I. & Rossi, D.J., 2014. Epigenetic regulation of hematopoietic stem cell aging. Exp Cell Res , 329 (2) , pp. 192-9. PMCID: PMC4250347.Abstract

Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks - DNA methylation and histone modifications - but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.